熱分析儀TA在鑄造生產(chǎn)上的應(yīng)用
1 熱分析的基本原理
熱分析法是通過測定物質(zhì)溫度的變化所引起的物性變化來確定物質(zhì)狀態(tài)變化的一種測試分析方法,即通過測定伴隨物質(zhì)的溫度變化和化學反應(yīng)的進行而發(fā)生的熱力學性質(zhì) 、物理性質(zhì)的變化 ,進而確定物質(zhì)結(jié)構(gòu)的熱變化及化學反應(yīng)常數(shù)的一種方法。在合金中無論發(fā)生哪一種變化 (如加熱時的熔化、冷卻時的結(jié)晶、 同素異構(gòu)轉(zhuǎn)變、 固態(tài)中過剩相熔解或析出等),都伴隨有熱量的釋放或吸收,從而使得因加熱而溫度上升或因冷卻而溫度下降時,溫度變化的連續(xù)性受到破壞并顯示出溫度特征值,在加熱或冷卻曲線上形成“拐點"或“平臺"。因此,構(gòu)成鑄件鑄態(tài)組織中的各個相,都會在冷卻曲線上留下相應(yīng)的痕跡 。與化學成分密切相關(guān)的鑄態(tài)組織中的各個相存在的比例系數(shù),取決于冷卻曲線上相應(yīng)特征值的位置和長度,它決定著鑄件的質(zhì)量狀況。所以有人把冷卻曲線稱之為“冶金質(zhì)量的指紋"。
如何從簡單的冷卻曲線提取更多的質(zhì)量信息,以及應(yīng)該用哪些信息來評價合金的某一具體的質(zhì)量指標,這需要對鑄鐵的凝固機制作較為深入的研究,也是人們選擇熱分析方法的前提。十幾年來,隨著微電子技術(shù)的發(fā)展,通過對冷卻曲線的微分處理,可以得到更多的評估液態(tài)金屬質(zhì)量狀況的信息。因此,簡單熱分析法和微分熱分析法結(jié)合,是當前鑄造熱分析技術(shù)普遍采用的方法。這些方法在定性熱分析技術(shù)上的應(yīng)用,開拓了定性熱分析技術(shù)研究的新領(lǐng)域 。
2 熱分析技術(shù)在鑄鐵件生產(chǎn)上 的應(yīng)用
熱分析法在鑄造生產(chǎn)中最初是用來測定鑄鐵碳當量。鑄鐵是具有共晶轉(zhuǎn)變的鐵碳合金,其共晶反應(yīng)是一個復雜的過程。若按Fe-G (石墨)穩(wěn)定系凝固則生成奧氏體+石墨的共晶體;按Fe-Fe3C介穩(wěn)定系凝固則生成奧氏體+滲碳體的共晶體。但由于曲線上初生奧氏體析出溫度主要取決于化學成分,而與凝固模式無關(guān),因此通過液相線溫度來表征碳當量的值,即CE%=f(TL)。但由于硅和磷對TL的影響并不能由常用的Fe-C相圖來確定,因此人們通過大量試驗和統(tǒng)計分析,并引入液相線碳當量(CEL=C+Si/4+P/2)的概念,得出適用于不同生產(chǎn)條件下測定液相線碳當量(CEL)的數(shù)學模型。
碳量和硅量的測定
灰鑄鐵在凝固過程中,受鐵液孕育狀況及結(jié)晶條件的影響,難以找到準確的共晶溫度。此外,共晶反應(yīng)時,由于鐵液放出結(jié)晶潛熱,導致共晶反應(yīng)在某一溫度區(qū)間內(nèi)進行。為了解決這一問題,在用熱分析法測試時,采用強制白口共晶凝固的方法,在樣杯內(nèi)涂以反石墨化涂料 (一般含碲、鉍等元素),促使鐵液無論是亞共晶還是過共晶,無論是否經(jīng)過孕育處理,都能按白口凝固,在冷卻曲線上顯示出較長的共晶停歇平臺,從而獲得準確值。從1973年開始,人們通過大量的測試試驗并利用數(shù)理統(tǒng)計方法,得到適用于不同生產(chǎn)條件的測定碳含量和硅含量的數(shù)學模型。
熱分析法快速測定的鐵液化學成分與化學分析結(jié)果相比,其誤差為:
CEL0.05%、(C)±0.05%、(Si)+0.1%
上述傳統(tǒng)的碳、硅含量的單獨測定方法只有在白口凝固條件下才能實現(xiàn)。這會使得鑄鐵在冷卻過程中熱分析曲線上的一些重要信息被改變,那么利用熱分析在測定成分的同時就很難評估鐵液質(zhì)量。同時對于經(jīng)鎂處理后球墨鑄鐵則不適用(由于碲會與鎂形成碲化鎂,失去了強制鐵液按白口凝固的作用)。有文獻報道采用雙杯(無碲灰口杯和加碲白口杯)或三杯(加碲白口杯、灰口不育杯、灰口孕育杯)同時測定的方法,更深入地揭示鐵液的凝固特性,獲得了特征值與白口深度、化學成分之間的關(guān)系。但是樣杯增多,設(shè)備復雜,不利于爐前的快速檢驗。
鐵液含氧量的測定
目前,國內(nèi)鑄造生產(chǎn)企業(yè)采用電爐熔煉鑄鐵,一般地說,電爐熔煉出的鐵液質(zhì)量優(yōu)于沖天爐。但由于電爐熔煉鐵液時,鐵液始終處于氧化性氣氛下,再加上鐵液劇烈翻滾,使得電爐熔煉鐵液的含氧量高于沖天爐。鐵液中過飽和的氧除了對石墨形核特性有重要影響外,對鐵液的成分也有一定的影響,因此有必要對鐵液中的含氧量進行測定。通過研究含氧量對冷卻 曲線初晶角變化的影響規(guī)律,試驗結(jié)果表明,隨著鐵液中含氧量的增加,冷卻曲線的初晶角度增大,若在樣杯中添加適量的鋁,可以提高測試精度,這種方法有望在鑄造生產(chǎn)中得到應(yīng)用。
非接觸式熱擴散率測量可以評估
從有機薄膜到金剛石的各種材料
熱物性測量范圍
可以測量從有機薄膜到鉆石的各種材料。此外,現(xiàn)在可以測量難以測量的高導熱性樹脂。我們還可以測量雙層樣品并處理難以加工的材料。
實測示例樣本 | 熱擴散率[m 2 s -1 ] |
---|
測量值 | 參考值 |
---|
穩(wěn)定氧化鋯 | 1.1× 10-6 | 1.2× 10-6 |
---|
氧化鋁 | 12× 10-6 | 12× 10-6 |
---|
鍺 | 37× 10-6 | 35× 10-6 |
---|
硅 | 89× 10-6 | 88× 10-6 |
---|
銅 | 110× 10-6 | 120× 10-6 |
---|
銀 | 170× 10-6 | 170× 10-6 |
---|
聚晶金剛石 | 720× 10-6 | 400~880× 10-6 |
---|
其他成就藍寶石 鉭 鉬 鋁 鈦酸鍶 不銹鋼 (SRM1461) 通用樹脂 各向同性石墨 氮化鋁(AlN) 氮化硅(SiC)等
|
材料各向異性
你了解樣品的各向異性嗎?
填料(AlN、SiO2、SiC、CNT等)和樹脂的復合材料的熱導率根據(jù)混合比例的不同而變化很大,因此測量熱擴散率非常重要。還可以測量樹脂基材料。
目的
電子部件散熱材料的評價、半導體激光電極的評價、熱電發(fā)電材料的評價、硬質(zhì)合金工具涂層的評價等。
樣本 | 測量方向 | 熱擴散率[m 2 s -1 ] |
---|
測量值 | 參考值* |
---|
聚酰亞胺t=25μm | 垂直的 | 0.14× 10-6 | 0.13× 10-6 |
---|
水平的 | 0.8× 10-6 | 0.73× 10-6 |
硅橡膠散熱片 | 垂直的 | 1.1× 10-6 | 不適用 |
---|
水平的 | 1.3× 10-6 | 不適用 |
含有碳納米管(CNT)的橡膠 | 垂直的 | 0.24× 10-6 | 不適用 |
---|
水平的 | 6.0× 10-6 | 不適用 |
石墨片 | 垂直的 | 1.9× 10-6 | 1.8~2.8× 10-6 |
---|
水平的 | 100× 10-6 | 90~100× 10-6 |
高導熱樹脂A 20Wm -1 K -1級 (尤尼吉可制造) | 垂直的 | 1.6× 10-6 | 2.4× 10-6 |
---|
水平的 | 16× 10-6 | 12× 10-6 |
高導熱樹脂B 5Wm -1 K -1級 (尤尼吉可制造) | 垂直的 | 0.74× 10-6 | 1.2× 10-6 |
---|
水平的 | 3.9× 10-6 | 3.1× 10-6 |
分布測量
即使使用相同的樹脂,熱導率也會根據(jù)成型條件和模具形狀而變化。
即使使用相同的樹脂,熱導率也會根據(jù)成型條件和模具形狀而變化。
主要規(guī)格
| TA35 | TA33 | TA32 | TA31 |
---|
測量目標 | 熱擴散率 |
---|
測量范圍 | 0.1~1000[×10 -6 m 2 s -1 ] |
---|
輸出數(shù)據(jù) | 頻率、距離、幅度、相位、厚度【TXT格式】 |
---|
測量模式 | 垂直方向 | ○ | ○ | - | ○ |
---|
水平方向 | ○ | ○ | ○ | - |
---|
分布測量 | ○ | - | - | - |
---|
其他配件 | 溫度調(diào)節(jié)加熱器 | 選項 | 選項 | - | - |
---|
焦點調(diào)節(jié) | 汽車 | 汽車 | 手動的 | 手動的 |
---|
控制/分析軟件 | ○ | ○ | ○ | ○ |
---|
個人電腦 | ○ | ○ | ○ | ○ |
---|
測量環(huán)境 | 測量溫度 | 室內(nèi)溫度 |
---|
測量溫度(安裝加熱器時) | 室溫?300[℃] | - |
---|
測量頻率 | 0.01[Hz]~100[kHz] |
---|
半導體激光器 | 波長 | 808[納米] |
---|
最大輸出 | 1.5[瓦] |
---|
輻射溫度計 | 元素 | 銻化銦 |
---|
冷卻方式 | 液氮 |
---|
舞臺可動區(qū)域 | 檢測階段 | ±5[毫米] | ±5[毫米] | ±5[毫米] | - |
---|
樣品臺 | ±10[毫米] | - | - | - |
---|
重復性 | ±5[%] |
---|
電源 | AC100-240[V]、10-5[A]、50/60[Hz] |
---|
激光安全 | Ⅰ類激光產(chǎn)品 IEC/EN 60825-1:2007 |
---|